
Workshop on Language Technology for Normalisation of Less-Resourced Languages (SALTMIL8/AfLaT2012)

7

Learning Morphological Rules for Amharic Verbs

Using Inductive Logic Programming

Wondwossen Mulugeta1 and Michael Gasser2
1
Addis Ababa University, Addis Ababa, Ethiopia

2
Indiana University, Bloomington, USA

E-mail:
1
wondgewe@indiana.edu,

2
gasser@cs.indiana.edu

Abstract

This paper presents a supervised machine learning approach to morphological analysis of Amharic verbs. We use Inductive Logic

Programming (ILP), implemented in CLOG. CLOG learns rules as a first order predicate decision list. Amharic, an under-resourced

African language, has very complex inflectional and derivational verb morphology, with four and five possible prefixes and suffixes

respectively. While the affixes are used to show various grammatical features, this paper addresses only subject prefixes and suffixes.

The training data used to learn the morphological rules are manually prepared according to the structure of the background

predicates used for the learning process. The training resulted in 108 stem extraction and 19 root template extraction rules from the

examples provided. After combining the various rules generated, the program has been tested using a test set containing 1,784

Amharic verbs. An accuracy of 86.99% has been achieved, encouraging further application of the method for complex Amharic

verbs and other parts of speech.

1. Introduction

Amharic is a Semitic language, related to Hebrew,

Arabic, and Syriac. Next to Arabic, it is the second most

spoken Semitic language with around 27 million

speakers (Sieber, 2005; Gasser, 2011). As the working

language of the Ethiopian Federal Government and

some regional governments in Ethiopia, most documents

in the country are produced in Amharic. There is also an

enormous production of electronic and online accessible

Amharic documents.

One of the fundamental computational tasks for a

language is analysis of its morphology, where the goal is

to derive the root and grammatical properties of a word

based on its internal structure. Morphological analysis,

especially for complex languages like Amharic, is vital

for development and application of many practical

natural language processing systems such as machine-

readable dictionaries, machine translation, information

retrieval, spell-checkers, and speech recognition.

While various approaches have been used for other

languages, Amharic morphology has so far been

attempted using only rule-based methods. In this paper,

we applied machine learning to the task.

2. Amharic Verb Morphology

The different parts of speech and their formation

along with the interrelationships which constitute the

morphology of Amharic words have been more or less

thoroughly studied by linguists (Sieber, 2005;

Dwawkins, 1960; Bender, 1968). In addition to lexical

information, the morphemes in an Amharic verb convey

subject and object person, number, and gender; tense,

aspect, and mood; various derivational categories such

as passive, causative, and reciprocal; polarity

(affirmative/negative); relativization; and a range of

prepositions and conjunctions.

For Amharic, like most other languages, verbs have

the most complex morphology. In addition to the

affixation, reduplication, and compounding common to

other languages, in Amharic, as in other Semitic

languages, verb stems consist of a root + vowels +

template merger (e.g., sbr + ee + CVCVC, which leads

to the stem seber
1
 ‘broke’) (Yimam, 1995;

Bender, 1968). This non-concatenative process makes

morphological analysis more complex than in languages

whose morphology is characterized by simple affixation.

The affixes also contribute to the complexity. Verbs can

take up to four prefixes and up to five suffixes, and the

affixes have an intricate set of co-occurrence rules.

For Amharic verbs, grammatical features are not only

shown using the affixes. The intercalation pattern of the

consonants and the vowels that make up the verb stem

will also be used to determine various grammatical

features of the word. For example, the following two

words have the same prefixes and suffixes and the same

root while the pattern in which the consonants and the

vowels intercalated is different, resulting in different

grammatical information.

?-sebr-alehu 1s pers.sing. simplex imperfective

?-seber-alehu 1stpers.sing.passive imperfective

Figure 1: Stem template variation example

In this second case, the difference in grammatical

feature is due to the affixes rather than the internal root

template structure of the word.

te-deres-ku 1st pers. sing. passive perfective

deres-ku 1st pers. sing. simplex perfective

Figure 2: Affix variation example

1 Amharic is written in the Geez writing system. For our morphology learning

system we romanize Amharic orthography, and we cite these romanized forms in

this paper.

Workshop on Language Technology for Normalisation of Less-Resourced Languages (SALTMIL8/AfLaT2012)

8

As in many other languages, Amharic morphology is

also characterized by alternation rules governing the

form that morphemes take in particular environments.

The alternation can happen either at the stem affix

intersection points or within the stem itself. Suffix-based

alternation is seen, for example, in the second person

singular feminine imperfect and imperative, shown in

Table 1. The first two examples in Table 1 shows that,

the second person singular feminine imperative marker

'i', if preceded by the character 'l', is altered to 'y'. The

last two examples show that the same alternation rule

applies for imperfect roots.

No. Word Root Feature

1 gdel gdl 2nd person sing. masc. imperative

2 gdey (gdel-i) gdl 2nd person sing. fem. imperative

3 t-gedl-aleh gdl 2nd person sing. masc. imperfect

4 t-gedy-alex gdl 2nd person sing. fem. imperfect

Table 1: Example of Amharic Alternation Rule

3. Machine Learning of Morphology

Since Koskenniemi’s (1983) ground-breaking work on

two-level morphology, there has been a great deal of

progress in finite-state techniques for encoding

morphological rules (Beesley & Karttunen, 2003).

However, creating rules by hand is an arduous and time-

consuming task, especially for a complex language like

Amharic. Furthermore, a knowledge-based system is

difficult to debug, modify, or adapt to other similar

languages. Our experience with HornMorpho (Gasser,

2011), a rule-based morphological analyser and

generator for Amharic, Oromo, and Tigrinya, confirms

this. For these reasons, there is considerable interest in

robust machine learning approaches to morphology,

which extract linguistic knowledge automatically from

an annotated or un-annotated corpus. Our work belongs

to this category.

Morphology learning systems may be unsupervised

(Goldsmith, 2001; Hammarström & Borin, 2011; De

Pauw & Wagacha, 2007) or supervised (Oflazer et al

2001; Kazakov, 2000). Unsupervised systems are trained

on unprocessed word forms and have the obvious

advantage of not requiring segmented data. On the other

hand, supervised approaches have important advantages

of their own where they are less dependent on large

corpora, requires less human effort, relatively fast which

makes it scalable to other languages and that all rules in

the language need not be enumerated.
Supervised morphology learning systems are usually

based on two-level morphology. These approaches differ

in the level of supervision they use to capture the rules.

A weakly supervised approach uses word pairs as input

(Manandhar et al, 1998; Mooney & Califf, 1995;

Zdravkova et al, 2005). Other systems may require

segmentation of input words or an analysis in the form

of a stem or root and a set of grammatical morphemes.

4. ILP and Morphology Learning

Inductive Logic Programming (ILP) is a supervised

machine learning framework based on logic

programming. In ILP a hypothesis is drawn from

background knowledge and examples. The examples

(E), background knowledge (B) and hypothesis (H) all

take the form of logic programs. The background

knowledge and the final hypothesis induced from the

examples are used to evaluate new instances.

Since logic programming allows for the expression of

arbitrary relations between objects, ILP is more

expressive than attribute-value representations, enabling

flexible use of background knowledge (Bratko & King,

1994; Mooney & Califf, 1995). It also has advantages

over approaches such as n-gram models, Hidden

Markov Models, neural networks and SVM, which

represent examples using fixed length feature vectors

(Bratko & King, 1994). These techniques have difficulty

representing relations, recursion and unbounded

structural representation (Mooney, 2003). ILP, on the

other hand, employs a rich knowledge representation

language without length constraints. Moreover, the first

order logic that is used in ILP limits the amount of

feature extraction required in other approaches.

In induction, one begins with some data during the

training phase, and then determines what general

conclusion can logically be derived from those data. For

morphological analysis, the learning data would be

expected to guide the construction of word formation

rules and interactions between the constituents of a

word.

There have been only a few attempts to apply ILP to

morphology, and most of these have dealt with

languages with relatively simple morphology handling

few affixations (Kazakov, 2000; Manandhar et al, 1998;

Zdravkova et al, 2005). However, the results are

encouraging.

While we focus on Amharic verb morphology, our

goal is a general-purpose ILP morphology learner. Thus

we seek background knowledge that is plausible across

languages that can be combined with language-specific

examples to yield rule hypotheses that generalize to new

examples in the language.

CLOG is a Prolog based ILP system, developed by

Manandhar et al (1998)
2
, for learning first order decision

lists (rules) on the basis of positive examples only. A

rule in Prolog is a clause with one or more conditions.

The right-hand side of the rule (the body) is a condition

and the left-hand side of the rule (the head) is the

conclusion. The operator between the left and the right

hand side (the sign ‘:-’) means if. The body of a rule is a

list of goals separated by commas, where commas are

understood as conjunctions. For a rule to be true, all of

its conditions/goals must be evaluated to be true. In the

expression below, p is true if q and r are true or if s and t are

true.

2
 CLOG is freely available ILP system at:

http://www-users.cs.york.ac.uk/suresh/CLOG.html)

http://www-users.cs.york.ac.uk/suresh/CLOG.html

Workshop on Language Technology for Normalisation of Less-Resourced Languages (SALTMIL8/AfLaT2012)

9

p :- q, r.

p :- s, t.

p ⇔ (q ᴧ r) ᴠ (s ᴧ t)

Where q, r, s and t could be facts or predicates with any
arity and p is a predicate with any number of arguments.

CLOG relies on output completeness, which assumes

that every form of an object is included in the example

and everything else is excluded (Mooney & Califf,

1995). We preferred CLOG over other ILP systems

because it requires only positive examples and runs

faster than the other variants (Manandhar et al, 1998).

CLOG uses a hill climbing strategy to build the rules,

starting from a simple goal and iteratively adding more

rules to satisfy the goal until there are no possible

improvements. The evaluation of the rules generated by

the learner is validated using a gain function that

compares the number of positively and negatively

covered examples in the current and previous learning

stages (Manandhar et al, 1998).

5. Experiment Setup and Data

Learning morphological rules with ILP requires

preparation of the training data and background

knowledge. To handle a language of the complexity of

Amharic, we require background knowledge predicates

that can handle stem extraction by identifying affixes,

root and vowel identification and grammatical feature

association with constituents of the word.

The training data used during the experiment is of the

following form:

stem([s,e,b,e,r,k,u],[s,e,b,e,r],[s,b,r] [1,1]).

stem([s,e,b,e,r,k],[s,e,b,e,r],[s,b,r], [1,2]).

stem([s,e,b,e,r,x],[s,e,b,e,r],[s,b,r], [1,3]).

Figure 3: Sample examples for stem and root learning

The predicate 'stem' provides a word and its stem to

permit the extraction of the affixes and root template

structure of the word. The first three parameters specify

the input word, the stem of the word after affixes are

removed, and the root of the stem respectively. The

fourth parameter is the codification of the grammatical

features (tense-aspect-mood and subject) of the word.

Taking the second example in Figure 3, the word

seberk has the stem seber with the root sbr and is

perfective (the first element of the third parameter which

is 1) with second person singular masculine subject (the

second element of the third parameter is 2).

We codified the grammatical features of the words

and made them parameters of the training data set rather

than representing the morphosyntactic description as

predicates as in approaches used for other languages

(Zdravkova et al, 2005).

The background knowledge also includes predicates

for string manipulation and root extraction. Both are

language-independent, making the approach adaptable

to other similar languages. We run three separate

training experiments to learn the stem extraction, root

patterns, and internal stem alternation rules.

a) Learning stem extraction:

The background predicate 'set_affix' uses a

combination of multiple ‘split‟ operations to

identify the prefix and suffixes attached to the input

word. This predicate is used to learn the affixes

from examples presented as in Figure 3 by taking

only the Word and the Stem (the first two arguments

from the example).
set_affix(Word, Stem, P1,P2,S1,S2):-

 split(Word, P1, W11),

 split(Stem, P2, W22),

 split(W11, X, S1),

 split(W22, X, S2),

 not((P1=[],P2=[],S1=[],S2=[])).

Figure 4: Affix extraction predicate

The predicate makes all possible splits of Word and

Stem into three segments to identify the prefix and

suffix substitutions required to unify Stem with

Word. In this predicate, P1 and S1 are the prefix and

suffix of the Word; while P2 and S2 are the prefix

and suffix of the Stem respectively. For example, if

Word and Stem are tgedyalex and gedl respectively,

then the predicate will try all possible splits, and

one of these splits will result in P1=[t], P2=[],

S1=[yalex] and S2=[l]. That is, tgedyalex will be

associated with the stem gedl, if the prefix P1 is

replaced with P2 and the suffix S1is replaced with

S2.

The ultimate objective of this predicate is to identify

the prefix and suffix of a word and then extract the

valid stem (Stem) from the input string (Word).

Here, we have used the utility predicate ‘split‟ that

segments any input string into all possible pairs of

substrings. For example, the string sebr could be

segmented as {([]-[sebr]), ([s]-[ebr]), ([se]-[br]),

([seb]-[r]), or ([sebr]-[])}.

b) Learning Roots:

The root extraction predicate, 'root_vocal‟, extracts

Root and the Vowel with the right sequence from the

Stem. This predicate learns the root from examples

presented as in Figure 3 by taking only the Stem and

the Root (the second and third arguments).

root_vocal(Stem,Root,Vowel):-

 merge(Stem,Root,Vowel).

merge([X,Y,Z|T],[X,Y|R],[Z|V]):-

 merge(T,R,V).

merge([X,Y|T],R,[X,Y|V]):-

 merge(T,R,V).

merge([X|Y],[X|Z],W) :-

 merge(Y,Z,W).
merge([X|Y],Z,[X|W]) :-

 merge(Y,Z,W).
Figure 5: Root template extraction predicate

The predicate ‘root_vocal‟ performs unconstrained

permutation of the characters in the Stem until the

first part of the permutated string matches the Root

character pattern provided during the training. The

Workshop on Language Technology for Normalisation of Less-Resourced Languages (SALTMIL8/AfLaT2012)

10

goal of this predicate is to separate the vowels and

the consonants of a Stem. In this predicate we have

used the utility predicate ‘merge‟ to perform the

permutation. For example, if Stem is seber and the

example associates this stem with the Root sbr, then

„root_temp‟, using ‘merge‟, will generate many

patterns, one of which would be sbree. This,

ultimately, will learn that the vowel pattern [ee] is

valid within a stem.

c) Learning stem internal alternations:

Another challenge for Amharic verb morphology

learning is handling stem internal alternations. For

this purpose, we have used the background

predicate „set_internal_alter‟:

set_internal_alter(Stem,Valid_Stem,St1,St2):-

split(Stem,P1,X1),

split(Valid_Stem,P1,X2),

split(X1,St1,Y1),

split(X2,St2,Y1).
Figure 6: stem internal alternation extractor

This predicate works much like the ‘set_affix’

predicate except that it replaces a substring which is

found in the middle of Stem by another substring

from Valid_Stem. In order to learn stem alternations,

we require a different set of training data showing

examples of stem internal alternations. Figure 7

shows some sample examples used for learning

such rules.

alter([h,e,d],[h,y,e,d]).

alter([m,o,t],[m,e,w,o,t]).

alter([s,a,m],[s,e,?,a,m]).

Figure 7: Examples for internal stem alternation learning

The first example in Figure 7 shows that for the

words hed and hyed to unify, the e in the first

argument should be replaced with ye.

Along with the three experiments for learning various

aspects of verb morphology, we have also used two

utility predicates to support the integration between the

learned rules and to include some language specific

features. These predicates are ‘template‟ and ‘feature‟:

 ‘template‟: used to extract the valid template for

Stem. The predicate manipulates the stem to

identify positions for the vowels. This predicate

uses the list of vowels (vocal) in the language to

assign ‘0’ for the vowels and ‘1’ for the

consonants.
template([],[]).

template([X|T1],[Y|B]):-

 template(T1,B),

 (vocal(X)->Y=0;Y=1).
Figure 8: CV pattern decoding predicate

For the stem seber this predicate tries each

character separately and finally generates the

pattern [1,0,1,0,1] and for the stem sebr, it

generates [1,0,1,1] to show the valid template of

Amharic verbs.

 ‘feature‟: used to associate the identified affixes

and root CV pattern with the known

grammatical features from the example. This

predicate uses a codified representation of the

eight subjects and four tense-aspect-mood

features (‘tam’) of Amharic verbs, which is also

encoded as background knowledge. This

predicate is the only language-dependent

background knowledge we have used in our

implementation.

feature([X,Y],[X1,Y1]):-

 tam([X],X1),

subj([Y],Y1).
Figure 9: Grammatical feature assignment predicate

6. Experiments and Result

For CLOG to learn a set of rules, the predicate and

arity for the rules must be provided. Since we are

learning words by associating them with their stem, root

and grammatical features, we use the predicate schemas

rule(stem(_,_,_,_)) for set_affix and root_vocal, and

rule(alter(_,_)) for set_internal_alter. The training

examples are also structured according to these predicate

schemas.

The training set contains 216 manually prepared

Amharic verbs. The example contains all possible

combinations of tense and subject features. Each word is

first romanized, then segmented into the stem and

grammatical features, as required by the ‘stem‟ predicate

in the background knowledge. When the word results

from the application of one or more alternation rules, the

stem appears in the canonical form. For example, for the

word gdey, the stem specified is gdel (see the second

example in Table 1).

Characters in the Amharic orthography represent

syllables, hiding the detailed interaction between the

consonants and the vowels. For example, the masculine

imperative verb ‘ግደል’ gdel can be made feminine by

adding the suffix ‘i’ (gdel-i). But, in Amharic, when the

dental ‘l’ is followed by the vowel ‘i’, it is palatalized,

becoming ‘y’. Thus, the feminine form would be written

‘ግደይ’, where the character ‘ይ’ ‘y’ corresponds to the

sequence ‘l-i’.

To perform the romanization, we have used our own

Prolog script which maps Amharic characters directly to

sequences of roman consonants and vowels, using the

familiar SERA transliteration scheme. Since the

mapping is reversible, it is straightforward to convert

extracted forms back to Amharic script.

After training the program using the example set,

which took around 58 seconds, 108 rules for affix

extraction, 18 rules for root template extraction and 3

rules for internal stem alternation have been learned. A

sample rule generated for affix identification and

associating the word constituents with the grammatical

features is shown below:

Workshop on Language Technology for Normalisation of Less-Resourced Languages (SALTMIL8/AfLaT2012)

11

stem(Word, Stem, [2, 7]):-

 set_affix(Word, Stem, [y], [], [u], []),

 feature([2, 7], [imperfective, tppn]),

 template(Stem, [1, 0, 1, 1]).
Figure 10: Learned affix identification rule example

The above rule declares that, if the word starts with y

and ends with u and if the stem extracted from the word

after stripping off the affixes has a CVCC ([1,0,1,1])

pattern, then that word is imperfective with third person

plural neutral subject (tppn).

alter(Stem,Valid_Stem):-

 set_internal_alter(Stem,Valid_Stem, [o], [e, w, o]).

Figure 11: Learned internal alternation rule example

The above rule will make a substitution of the vowel o

in a specific circumstances (which is included in the

program) with ewo to transform the initial stem to a

valid stem in the language. For example, if the Stem is

zor, then o will be replaced with ewo to give zewor.

The other part of the program handles formation of

the root of the verb by extracting the template and the

vowel sequence from the stem. A sample rule generated

to handle the task looks like the following:

root(Stem, Root):-

 root_vocal(Stem, Root, [e, e]),

 template(Stem, [1, 0, 1, 0, 1]) .

Figure 12: Learned root-template extraction rule example

The above rule declares that, as long as the consonant

vowel sequence of a word is CVCVC and both vowels

are e, the stem is a possible valid verb. Our current

implementation does not use a dictionary to validate

whether the verb is an existing word in Amharic.

Finally, we have combined the background predicates

used for the three learning tasks and the utility

predicates. We have also integrated all the rules learned

in each experiment with the background predicates. The

integration involves the combination of the predicates in

the appropriate order: stem analysis followed by internal

stem alternation and root extraction.

After building the program, to test the performance of

the system, we started with verbs in their third person

singular masculine form, selected from the list of verbs

transcribed from the appendix of Armbruster (1908)
3
.

We then inflected the verbs for the eight subjects and

four tense-aspect-mood features of Amharic, resulting in

1,784 distinct verb forms. The following are sample

analyses of new verbs that are not part of the training set

by the program:

InputWord: [a, t, e, m, k, u]
 Stem: [?, a, t, e, m]
 Template: [1,0, 1, 0, 1]
 Root: [?, t, m]
 GrammaticalFeature: [perfective, fpsn*]

Figure 13: Sample Test Result (with boundary alternation)

*fpsn: first person singular neuter

3
 Available online at: http://nlp.amharic.org/resources/lexical/word-lists/verbs/c-

h-armbruster-initia-amharica/ (accessed February 12, 2012).

The above example shows that the suffix that needs to

be stripped off is [k,u] and that there is an alternation

rule that changes ‘a’ to ‘?,a’ at the beginning of the

word.

InputWord: [t, k, e, f, y, a, l, e, x]

 Stem: [k, e, f, l]

 Template: [1,0, 1, 1]

 Root: [k, f, l]

 GrammaticalFeature: [imperfective, spsf*]

Figure 14: Sample Test Result (Internal alternation)

*spsf: second person singular feminine

The above example shows that the prefix and suffix

that need to be stripped off are [t] and [a,l,e,x]

respectively and that there is an alternation rule that

changes ‘y’ to ‘l’ at the end of the stem after removing

the suffix.

The system is able to correctly analyze 1,552 words,

resulting in 86.99% accuracy. With the small set of

training data, the result is encouraging and we believe

that the performance will be enhanced with more

training examples of various grammatical combinations.

The wrong analyses and test cases that are not handled

by the program are attributed to the absence of such

examples in the training set and an inappropriate

alternation rule resulting in multiple analysis of a single

test word.

Test Word Stem Root Feature

[s,e,m,a,c,h,u] [s,e,m,a,?] [s,m,?] perfective, sppn

[s,e,m,a,c,h,u] [s,e,y,e,m] [s,y,m] gerundive, sppn

[l,e,g,u,m,u] [l,e,g,u,m] NA NA

 Table 2: Example of wrong analysis

Table 2 shows some of the wrong analyses and words

that are not analyzed at all. The second example shows

that an alternation rules has been applied to the stem

resulting in wrong analysis (the stem should have been

the one in the first example). The last example generated

a stem with vowel sequence of ‘eu’ which is not found

in any of the training set, categorizing the word in the

not-analyzed category.

7. Future work

ILP has proven to be applicable for word formation

rule extraction for languages with simple rules like

English. Our experiment shows that the approach can

also be used for complex languages with more

sophisticated background predicates and more examples.

While Amharic has more prefixes and suffixes for

various morphological features, our system is limited to

only subject markers. Moreover, all possible

combinations of subject and tense-aspect-mood have

been provided in the training examples for the training.

This approach is not practical if all the prefix and

suffixes are going to be included in the learning process.

One of the limitations observed in ILP for

morphology learning is the inability to learn rules from

incomplete examples. In languages such as Amharic,

there is a range of complex interactions among the

http://nlp.amharic.org/resources/lexical/word-lists/verbs/c-h-armbruster-initia-amharica/
http://nlp.amharic.org/resources/lexical/word-lists/verbs/c-h-armbruster-initia-amharica/

Workshop on Language Technology for Normalisation of Less-Resourced Languages (SALTMIL8/AfLaT2012)

12

different morphemes, but we cannot expect every one of

the thousands of morpheme combinations to appear in

the training set. When examples are limited to only

some of the legal morpheme combinations, CLOG is

inadequate because it is not able to use variables as part

of the body of the predicates to be learned.

An example of a rule that could be learned from

partial examples is the following: “if a word has the

prefix 'te', then the word is passive no matter what the

other morphemes are”. This rule (not learned by our

system) is shown in Figure 15.

stem(Word, Stem, Root, GrmFeatu):-

 set_affix(Word, Stem, [t,e], [], S, []),

 root_vocal(Stem, Root, [e, e]),

 template(Stem, [1, 0, 1, 0, 1]),

 feature(GrmFeatu, [Ten, passive, Sub]).

Figure 15: Possible stem analysis rule with partial feature

That is, S is one of the valid suffixes, Ten is the Tense,

and Sub is the subject, which can take any of the

possible values.

Moreover, as shown in section 2, in Amharic verbs,

some grammatical information is shown by various

combinations of affixes. The various constraints on the

co-occurrence of affixes are the other problem that needs

to be tackled. For example, the 2
nd

 person masculine

singular imperfective suffix aleh can only co-occur with

the 2
nd

 person prefix t in words like t-sebr-aleh. At the

same time, the same prefix can occur with the suffix

alachu for the 2
nd

 person plural imperfective form. To

represent these constraints, we apparently need explicit

predicates that are specific to the particular affix

relationship. However, CLOG is limited to learning only

the predicates that it has been provided with.

We are currently experimenting with genetic

programming as a way to learn new predicates based on

the predicates that are learned using CLOG.

8. Conclusion

We have shown in this paper that ILP can be used to

fast-track the process of learning morphological rules of

complex languages like Amharic with a relatively small

number of examples. Our implementation goes beyond

simple affix identification and confronts one of the

challenges in template morphology by learning the root-

template extraction as well as stem-internal alternation

rule identification exhibited in Amharic and other

Semitic languages. Our implementation also succeeds in

learning to relate grammatical features with word

constituents.

9. References

Armbruster, C. H. (1908). Initia Amharic: an Introduc-

tion to Spoken Amharic. Cambridge: Cambridge Uni-

versity Press.

Beesley, K. R. and L. Karttunen. (2003). Finite State

Morphology. Stanford, CA, USA: CSLI Publications.

Bender, M. L. (1968). Amharic Verb Morphology: A

Generative Approach. Ph.D. thesis, Graduate School

of Texas.

Bratko, I. and King, R. (1994). Applications of Inductive

Logic Programming. SIGART Bull. 5, 1, 43-49.

Dawkins, C. H., (1960). The Fundamentals of Amharic.

Sudan Interior Mission, Addis Ababa, Ethiopia.

De Pauw, G. and P.W. Wagacha. (2007). Bootstrapping

Morphological Analysis of Gĩkũyũ Using Unsuper-

vised Maximum Entropy Learning. Proceedings of the

Eighth INTERSPEECH Conference, Antwerp, Bel-

gium.

Gasser, M. (2011). HornMorpho: a system for morpho-

logical processing of Amharic, Oromo, and Ti-

grinya. Conference on Human Language Technology

for Development, Alexandria, Egypt.

Goldsmith, J. (2001). The unsupervised learning of

natural language morphology. Computational Lin-

guistics, 27: 153-198.

Hammarström, H. and L. Borin. (2011). Unsupervised

learning of morphology. Computational Linguistics,

37(2): 309-350.

Kazakov, D. (2000). Achievements and Prospects of

Learning Word Morphology with ILP, Learning Lan-

guage in Logic, Lecture Notes in Computer Science.

Kazakov, D. and S. Manandhar. (2001). Unsupervised

learning of word segmentation rules with genetic al-

gorithms and inductive logic programming. Machine

Learning, 43:121–162.

Koskenniemi, K. (1983). Two-level Morphology: a Gen-

eral Computational Model for Word-Form Recogni-

tion and Production. Department of General Linguis-

tics, University of Helsinki, Technical Report No. 11.

Manandhar, S. , Džeroski, S. and Erjavec, T. (1998).

Learning multilingual morphology with CLOG. Pro-

ceedings of Inductive Logic Programming. 8th Inter-

national Workshop in Lecture Notes in Artificial Intel-

ligence. Page, David (Eds) pp.135–44. Berlin:

Springer-Verlag.

Mooney, R. J. (2003). Machine Learning. Oxford Hand-

book of Computational Linguistics, Oxford Univer-

sity Press, pp. 376-394.

Mooney, R. J. and Califf, M.E. (1995). Induction of first-

order decision lists: results on learning the past tense

of English verbs, Journal of Artificial Intelligence Re-

search, v.3 n.1, p.1-24.

Oflazer, K., M. McShane, and S. Nirenburg. (2001).

Bootstrapping morphological analyzers by combining

human elicitation and machine learning. Computa-

tional Linguistics, 27(1):59–85.

Sieber, G. (2005). Automatic Learning Approaches to

Morphology, University of Tübingen, International

Studies in Computational Linguistics.

Yimam, B. (1995). Yamarigna Sewasiw (Amharic

Grammar). Addis Ababa: EMPDA.

Zdravkova, K., A. Ivanovska, S. Dzeroski and T. Er-

javec, (2005). Learning Rules for Morphological

Analysis and Synthesis of Macedonian Nouns. In

Proceedings of SIKDD 2005, Ljubljana.

http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Manandhar%2C+S.)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(D%C5%BEeroski%2C+S.)
http://www.tandfonline.com/action/doSearch?action=runSearch&type=advanced&result=true&prevSearch=%2Bauthorsfield%3A(Erjavec%2C+T.)

